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Abstract Following the theory of linear piezoelectricity, the electroelastic problem of a flat annular crack
in a piezoelectric fiber embedded in an elastic medium is considered. Fourier and Hankel transform tech-
niques are employed to formulate the mixed-boundary-value problem as a singular integral equation. The
stress-intensity factor, energy-release rate and energy-density factor are computed for some piezoelectric
composites, and the influence of applied electric fields on the normalized values is displayed graphically.

Keywords Elasticity · Energy release rate · Integral transforms · Piezocomposites · Smart material
systems

1 Introduction

Piezoelectric fiber composites are an important branch of modern engineering materials, with wide
applications in sensors and actuators [1–3]. In the last decades, electric fracture behavior of piezoelec-
tric materials has been the topic of many discussions [4–6]. In theoretical studies of piezoelectric crack
problems, there are two commonly used electrical boundary conditions imposed across the crack surface,
(1) the permeable crack model, and (2) the impermeable crack model. Recently, Shindo et al. [7] employed
a finite-element analysis of piezoelectric composite double-torsion (DT) specimens for various electric
fields to calculate the energy release rate for permeable and impermeable crack models, and conducted
DT tests to verify theoretical predictions on the influence of an applied electric field on piezoelectric
fracture behavior. They concluded that the impermeable boundary conditions should not be used in engi-
neering practice because the criteria are unreliable and may yield misleading results. Analyses of cracked
piezoelectric ceramics [8, 9] and composites [10, 11] also indicated that a negative energy release rate is pro-
duced for the impermeable crack model. Narita et al. [12] made finite-element analyses of the single-edge
precracked-beam (SEPB) and indentation fracture (IF) tests on the piezoelectric ceramics based on the
use of permeable and impermeable boundary conditions. They, for example, found that for a given residual
force derived from the indentation plastic zone, the positive electric fields decrease the energy release rate
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at maximum depth point of the permeable crack, while negative electric fields have the opposite effect.
The increase in the crack length with increasing positive electric field is attributed to an increase of the
energy release rate with increasing positive electric field.

The geometry of internal flat annular cracks is of practical importance in electroelastic field-analysis,
since it represents an idealization of the banana-shaped cracks that are inherent in many piezoelectric
ceramics. This paper considers the mode I problem for a long piezoelectric fiber with a flat annular crack
surrounded by an elastic matrix. Fourier- and Hankel-transform methods are used to formulate the elec-
troelastic problem, in terms of a singular integral equation. Numerical results for the stress-intensity factor,
energy-release rate and energy-density factor are displayed graphically and discussed in detail.

2 Problem statement and basic equations

A piezoelectric fiber of radius b and finite length with a flat annular crack is embedded in an elastic matrix
having Young’s modulus E and Poisson’s ratio ν, as shown in Fig. 1. The problem will be formulated
using a cylindrical coordinate system (r, θ , z), where the longitudinal axis and the poling axis of the fiber
coincide with the z-axis. The crack is assumed to lie in a plane normal to the z-axis and occupies the region,
z = 0, c < r < a, where c and a are the inner and outer radii of the flat annular crack, respectively. The
piezoelectric fiber is transversely isotropic with hexagonal symmetry; it is subjected to a far-field normal
strain εzz = ε∞ and electric field Ez = E∞ (normal stress σzz = σ∞). Quantities in the neighboring elastic
matrix will subsequently be designated by a superscript E.

The equations of force and charge equilibriums without body force and internal charge are

σrr,r + σzr,z + σrr−σθθ
r = 0,

σzr,r + σzz,z + σzr
r = 0, 0 ≤ r < b,

}
(1)

Dr,r + Dr

r
+ Dz,z = 0, 0 ≤ r < b, (2)

Fig. 1 Geometry of a
piezoelectric fiber with a
flat annular crack
embedded in an elastic
matrix
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and

σE
rr,r + σE

zr,z + σE
rr − σE

θθ

r
= 0,

σE
zr,r + σE

zz,z + σE
zr

r
= 0, r > b.

⎫⎪⎪⎬
⎪⎪⎭

(3)

The constitutive equations for the piezoelectric fiber and elastic matrix can be written as [13]

σrr = c11ur,r + c12
ur

r
+ c13uz,z − e31Ez,

σθθ = c12ur,r + c11
ur

r
+ c13uz,z − e31Ez,

σzz = c13ur,r + c13
ur

r
+ c33uz,z − e33Ez,

σzr = c44(ur,z + uz,r)− e15Er,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

Dr = e15(ur,z + uz,r)+ ε11Er,

Dz = e31

(
ur,r + ur

r

)
+ e33uz,z + ε33Ez,

⎫⎪⎬
⎪⎭ (5)

σE
rr = (2µ+ λ)uE

r,r + λ

(
uE

r

r
+ uE

z,z

)
,

σE
θθ = λuE

r,r + (2µ+ λ)
uE

r

r
+ λuE

z,z,

σE
zz = λ

(
uE

r,r + uE
r

r

)
+ (2µ+ λ)uE

z,z,

σE
zr = µ(uE

r,z + uE
z,r),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(6)

where σrr, σθθ , σzz, σzr, σE
rr , σE

θθ , σE
zz, σE

zr are the components of the stress tensor; Dr and Dz the compo-
nents of electric displacement vector; ur, uz, uE

r and uE
z the components of displacement vectors; Er and

Ez the components of electric-field vector; c11, c12, c13, c33, c44 the elastic moduli measured in a constant
electric field; ε11, ε33 the dielectric permittivities measured at constant strain; e15, e31, e33 the piezoelectric
constants; λ=2Gν/(1 − 2ν) and µ = G the Lamé constants of the elastic matrix; and G=E/2(1 + ν) the
modulus of rigidity. A comma implies partial differentiation with respect to the coordinates. The electric
field components are related to the electric potential φ(r, z) by

Er = −φ,r, Ez = −φ,z. (7)

By substituting from (4) and (5) in (1) and (2) together with (7), we can write the governing equations for
the piezoelectric fiber as

c11

(
ur,rr+ ur,r

r
− ur

r2

)
+c44ur,zz+(c13+c44)uz,rz+(e31+e15)φ,rz = 0,

(c13+c44)
(

ur,rz+ ur,z

r

)
+c33uz,zz+c44

(
uz,rr+ uz,r

r

)
+e15

(
φ,rr + φ,r

r

)
+e33φ,zz = 0, 0 ≤ r < b,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(8)
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(e31 + e15)
(

ur,rz + ur,z

r

)
+ e15

(
uz,rr + uz,r

r

)
+ e33uz,zz − ε11

(
φ,rr + φ,r

r

)
− ε33φ,zz = 0, 0 ≤ r < b.

(9)

Similarly, we obtain

(2µ+ λ)

(
uE

r,rr + uE
r,r

r
− uE

r

r2

)
+ µuE

r,zz + (µ+ λ)uE
z,rz = 0,

(µ+ λ)

(
uE

r,rz + uE
r,z

r

)
+ (2µ+ λ)uE

z,zz + µ

(
uE

z,rr + uE
z,r

r

)
= 0, r > b.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(10)

In a vacuum, the constitutive equations (5) and the governing equation (9) become

Dr = ε0Er, Dz = ε0Ez, (11)

φ,rr + φ,r

r
+ φ,zz = 0, (12)

where ε0 = 8.85 × 10−12 C/Vm is the electric permittivity of the vacuum.
It is sufficient to consider the problem for the semi-infinite region z ≥ 0, 0 ≤ r < ∞, 0 ≤ θ ≤ 2π

only. The crack is traction-free and on its surface the normal component of the electric displacement and
the tangential component of the electric field are continuous. Also, the geometry and/or the fields are
symmetry. Thus

σzr(r, 0) = 0 (0 ≤ r ≤ b),
σE

zr(r, 0) = 0 (b ≤ r < ∞),
(13)

σzz(r, 0) = 0 (c < r < a),
uz(r, 0) = 0 (0 ≤ r ≤ c, a ≤ r ≤ b),
uE

z (r, 0) = 0 (b ≤ r < ∞),
(14)

Er(r, 0) = Ec
r(r, 0) (c < r < a),

φ(r, 0) = 0 (0 ≤ r ≤ c, a ≤ r ≤ b),
(15)

Dz(r, 0) = Dc
z(r, 0) (c < r < a), (16)

where the superscript c denotes the electric field quantity in the void inside the crack. At r = b the
continuities of displacements and stresses require that

ur(b, z) = uE
r (b, z), (17)

uz(b, z) = uE
z (b, z), (18)

σrr(b, z) = σE
rr (b, z), (19)

σrz(b, z) = σE
rz(b, z). (20)

In electrostatics, at a surface separating two dielectric bodies, the normal component of the electric dis-
placement and the tangential component of the electric field are continuous. However, when one of the
bodies is an elastic body, these two conditions can be approximated simply by one, namely that the normal
component of the electric displacement vanishes at the interface. So the electrical boundary condition at
r = b is (see [12])

Dr(b, z) = 0. (21)
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This assumption of impermeability is based on the fact that there ia a very large difference between the
dielectric constants of the piezoelectric fiber and the elastic matrix. This does not mean that the elastic
matrix is grounded, i.e., φ(b, z) �= 0. The loading conditions at infinity are

εzz(r, z) = ε∞, Ez(r, z) = E∞ (0 ≤ r ≤ b, z → ∞),

εE
zz(r, z) = ε∞ (b ≤ r < ∞, z → ∞).

(22)

Equations 15 and 16 are the permeability boundary conditions. The electric potential is uniformly zero on
the symmetry planes inside the crack and ahead of the crack, so the boundary conditions of (15) reduce to
φ(r, 0) = 0 (0 ≤ r ≤ b). The electric-field intensity Ec

r(r, 0) is equal to zero, and the electric displacement
Dc

z(r, 0) is determined precisely.
On the other hand, when a spherical or a spheroidal defect problem in a piezoelectric fiber is analyzed,

the impermeability condition is a good approximation. The electroelastic fields around a defect for the
impermeable crack model, however, are quite different from those for the permeable-crack model when
the defect becomes a sharp crack. Therefore, the crack problem should not be solved with the imperme-
ability condition [12]. Of course, the impermeable flat annular-crack model, Dz(r, 0) = 0 (c < r < a), has
not been treated yet.

By applying the loading conditions (22), the far-field normal stresses σ∞ and σE∞ are expressed as

σ∞ = σ0 − e1E∞, σE∞ = c1(σ∞ + e1E∞), (23)

where

c1 = 2µ(1 + ν)(c11 + c12 − λ)

2c13(λν − c13)+ c33(c11 + c12 − λ)
,

e1 = e33 + 2c13e31

λ− c11 − c12
,

(24)

and

σ0 =
{

c33 − 2c13(c13 − λν)

c11 + c12 − λ

}
ε∞. (25)

Note that σ0 is a uniform normal stress for a closed-circuit condition with the potential forced to remain
zero (grounded), and depends only on the strain at infinity. When a uniform strain ε∞ is applied and fixed
at infinity, the stress σ0 will be uniform. When the stress σ∞ is applied and fixed at infinity, σ∞ is left
unchanged and the strain ε∞ depends on E∞.

3 Solution procedure

Let the solutions of (8)–(10) be of the form

ur(r, z) = 2
π

3∑
j=1

∫ ∞

0
[ajAj(α) exp(−γjαz)J1(αr)+ a

′
jBj(α)I1(γ

′
j αr) cos(αz)] dα + a∞r,

uz(r, z) = 2
π

3∑
j=1

∫ ∞

0

[
1
γj

Aj(α) exp(−γjαz)J0(αr)+ 1

γ
′
j

Bj(α)I0(γ
′
j αr) sin(αz)

]
dα + b∞z,

0 ≤ r < b,

(26)

φ(r, z) = 2
π

3∑
j=1

∫ ∞

0

[
−bj

γj
Aj(α) exp(−γjαz)J0(αr)+ b

′
j

γ
′
j

Bj(α)I0(γ
′
j αr) sin(αz)

]
dα − c∞z,

0 ≤ r < b,

(27)
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uE
r (r, z) = 2

π

∫ ∞

0
{−K1(αr)B4(α)+ [4(1 − ν)K1(αr)+ αrK0(αr)]B5(α)} cos(αz) dα

+ a∞b + d∞(r − b),

uE
z (r, z) = 2

π

∫ ∞

0
[−K0(αr)B4(α)+ αrK1(αr)B5(α)] sin(αz) dα + e∞z, r > b,

(28)

where Aj(α) (j = 1, 2, 3) and Bj(α) (j = 1, . . . , 5) are the unknown functions to be solved, J0() and J1()

are the zero- and first-order Bessel functions of the first kind, I0() and I1() are the zero- and first-order
modified Bessel functions of the first kind, and K0() and K1() are the zero- and first-order modified Bessel
functions of the second kind, respectively. Details of the derivation of (26)–(28) are given in Appendix 1.
The real constants a∞, b∞, c∞, d∞ and e∞ will be determined from the far-field loading conditions, and
γ 2

j , aj, bj, γ
′2
j , a

′
j, b

′
j (j = 1, 2, 3) are given in Appendix 1. Application of the Fourier transform to (12) yields

φc(r, z) = 2
π

∫ ∞

0
C(α) sinh(αz)J0(αr) dα, c < r < a, (29)

where C(α) is also unknown. It can be shown that φc(r, 0) = 0, c < r < a.
By applying the far-field loading conditions, we obtain the constants a∞, b∞, c∞, d∞ and e∞ as

a∞ = 1
c11 + c12 − λ

{(λν − c13)ε∞ + e31E∞} , b∞ = e∞ = ε∞, c∞ = E∞, d∞ = −νε∞. (30)

The following relations between unknown functions are obtained from the boundary conditions of the first
of Eqs. 13 and 15:

f1

γ1
A1(α)+ f2

γ2
A2(α)+ f3

γ3
A3(α) = 0, (31)

b1

γ1
A1(α)+ b2

γ2
A2(α)+ b3

γ3
A3(α) = 0, (32)

where

fj = c44(ajγ
2
j + 1)− e15bj (j = 1, 2, 3). (33)

Solving for A2(α) and A3(α) from (31) and (32), we see that

A2(α) = d2

d1
A1(α), (34)

A3(α) = d3

d1
A1(α), (35)

where

d1 = γ1(b2f3 − b3f2), d2 = γ2(b3f1 − b1f3), d3 = γ3(b1f2 − b2f1). (36)

Introduce the new function ψ(r), c < r < a , by

uz,r(r, 0) = 2
π
ψ(r)

3∑
j=1

dj

γj
, c < r < a. (37)

Then, the second of Eq. 14 is satisfied if∫ a

c
ψ(t) dt = 0. (38)

Substituting the second of Eq. 26 in Eq. 37 and applying an inverse Hankel transform, we find that

A1(α) = −d1

∫ a

c
tψ(t)J1(αt) dt. (39)
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The second of Eq. 13 and the third of Eq. 14 are automatically satisfied by the solutions in (26) and (28). By
substituting from (26–28) in (17–21) together with in (4–7), using (34), (35), (39) and solving the resulting
equations for Bj(α) (j = 1, . . . , 5) in terms of ψ(t), we may write the unknowns Bj(α) (j = 1, . . . , 5) as

Bj(α) = 2
π

∫ a

c
tψ(t)

5∑
i=1

Pi(α, t)Qi,j(α)

|C(α)| dt, (j = 1, . . . , 5), (40)

where Pi(α, t), Qi,j(α) and |C(α)| are given in Appendix 2. Using the results, the stress σzz(r, 0) takes the
form

σzz(r, 0) = − 2
π

F
∫ a

c
ψ(t){R(r, t)+ S(r, t)} dt, c < r < a, (41)

where

R(r, t) = 2
π

t
r2 − t2

E
( r

t

)
; r < t,

= 2
π

{
r

r2 − t2
E

(
t
r

)
− 1

r
K

(
t
r

)}
; r > t, (42)

S(r, t) = − 2t
πF

3∑
j=1

∫ ∞

0
αgjγj

3∑
i=1

Pi(α, t)Qi,j(α)

|C(α)| I0(γj
′αr) dα, (43)

F =
3∑

j=1

gjdj, (44)

gj = c13aj − c33 + e33bj (j = 1, 2, 3). (45)

In Eq. 42, K and E are complete elliptic integrals of the first and second kind, respectively. Note that R(r, t)
denotes the singular part, whereas S(r, t) is regular. Then, the first of Eq. 14 yields∫ a

c
ψ(t){R(r, t)+ S(r, t)} dt = − π

2F
σ∞, c < r < a. (46)

Prior to the numerical solution of (46), it is normalized by introducing

r = a − c
2

v + a + c
2

, t = a − c
2

w + a + c
2

, (47)

ψ(t) = − πσ∞
(a − c)F

�(w)

(1 − w2)
1/2

. (48)

If we now substitute (47) and (48) in (46) and (38), we get
∫ 1

−1

1

(1 − w2)
1/2

{R∗(v, w)+ S∗(v, w)}�(w) dw = 1, −1 < v < 1, (49)

∫ 1

−1

1

(1 − w2)
1/2
�(w) dw = 0, (50)

where

R∗(v, w) = R(r, t), (51)

S∗(v, w) = S(r, t). (52)
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Using the Lobatto–Chebyshev method [14], we may cast Eqs. 49 and 50 into the matrix form as

N∑
k=1

Wk{R∗(vi, wk)+ S∗(vi, wk)}Ψ(wk) = 1 (i = 1, . . . , N − 1), (53)

N∑
k=1

WkΨ(wk) = 0, (54)

where

vi = cos

(
i − 1/2
N − 1

π

)
(i = 1, . . .N − 1), (55)

wk = cos

(
k − 1
N − 1

π

)
(k = 1, . . . , N), (56)

Wk = π

N − 1
(k = 2, . . . , N − 1), Wk = π

2(N − 1)
(k = 1, N). (57)

For c = 0 [11], the integral in (49) can be evaluated by using the Gaussian quadrature formula.
The stress-intensity factor ki

1 at the inner tip of the flat annular crack is obtained as

ki
1 = limr→c− {2(c − r)}1/2 σzz(r, 0)

= σ∞
(

2
a − c

)1/2

Ψ(−1).
(58)

The stress-intensity factor ko
1 at the outer tip of the crack is

ko
1 = limr→a+ {2(r − a)}1/2 σzz(r, 0)

= −σ∞
(

2
a − c

)1/2

Ψ(1).
(59)

Also obtained are expressions for the energy-release rate and energy-density factor:

Gδ = π

2F2

⎛
⎝F

3∑
j=1

dj

γj
−

3∑
j=1

hjdj

3∑
j=1

bjdj

γj

⎞
⎠ (kδ1)2 (δ = i, o), (60)

Sδ = (aδM + aδE)(k
δ
1)

2 (δ = i, o), (61)

where

aδM = 1
8F2

⎧⎨
⎩

3∑
j=1

mjdjRc
j (θ

δ
1 )

3∑
j=1

ajdjRc
j (θ

δ
1 )+

3∑
j=1

fjdj

γj
Rs

j (θ
δ
1 )

3∑
j=1

dj(ajγ
2
j + 1)

γj
Rs

j (θ
δ
1 )

−
3∑

j=1

gjdjRc
j (θ

δ
1 )

3∑
j=1

djRc
j (θ

δ
1 )

⎫⎬
⎭ , (62)

aδE = 1
8F2

⎧⎨
⎩

3∑
j=1

nj

γj
djRs

j (θ
δ
1 )

3∑
j=1

bjdj

γj
Rs

j (θ
δ
1 )−

3∑
j=1

hjdjRc
j (θ

δ
1 )

3∑
j=1

bjdjRc
j (θ

δ
1 )

⎫⎬
⎭ , (63)
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and

Rc
j (θ

δ
1 ) =

{
(cos2 θδ1 + γ 2

j sin2 θδ1 )
1/2 + cos θδ1

cos2 θδ1 + γ 2
j sin2 θδ1

}1/2

,

Rs
j (θ

δ
1 ) = −

{
(cos2 θδ1 + γ 2

j sin2 θδ1 )
1/2 − cos θδ1

cos2 θδ1 + γ 2
j sin2 θδ1

}1/2

(δ = i, o),

(64)

θ i
1 = tan−1

(
z

c − ri
1

)
, r i

1 = {(c − r)2 + z2}1/2, (65)

θo
1 = tan−1

(
z

ro
1 − a

)
, ro

1 = {(r − a)2 + z2}1/2. (66)

4 Numerical results and discussion

To examine the effect of electroelastic interactions on the stress-intensity factor, energy-release rate and
energy-density factor for a flat annular permeable crack, the solution of the singular integral equation (49)
governing Ψ(w) has been computed numerically by the use of Lobatto–Chebyshev method. Once this has
been done, kδ1, Gδ and Sδ(δ = i, o) can be found from (58–61). The piezoelectric fibers are assumed to be
the commercially available PZTs P-7 (Murata Manufacturing Co., Ltd., Japan) and C-91 (Fuji Ceramics
Co., Ltd., Japan). The material properties are listed in Table 1. The matrix is epoxy, epoxy with 30.5% glass
beads [1], or aluminum [15]. The Young’s modulus E and Poisson’s ratio ν are listed in Table 2.

Figure 2 shows the normalized stress-intensity factors πkδ1/2σ0a1/2(δ = i, o) versus inner-crack-radius
to outer-crack-radius ratio c/a for a P-7-epoxy composite with a/b = 0.9 under the normalized electric
field e1E∞/σ0 = 0. The normalized stress-intensity factors πkδ1/2σ0a1/2 of a free-surface P-7 fiber under
e1E∞/σ0 = 0 is included for comparison purposes. The stress-intensity factor of the P-7-epoxy composite
remains smaller than that of the P-7 fiber. It may also be seen that ki

1 is larger than ko
1. An increase

in the stress-intensity factor is observed with a decrease of c/a. The normalized stress-intensity factor
πko

1/2σ0a1/2 tends to the result for a penny-shaped crack [11] as c/a → 0. When (a − c)/a → 0, both
πki

1/2σ0a1/2 and πko
1/2σ0a1/2 approach the normalized stress-intensity factor for a Griffith crack of length

a − c in the plane-strain state. Results are presented in the form of plots for the normalized stress-intensity

Table 1 Material properties of piezoelectric ceramics P-7 and C-91

Elastic stiffnesses Piezoelectric coefficients Dielectric constants
(×1010 N/m2) (C/m2) (×10−10 C/Vm)

c11 c33 c44 c12 c13 e31 e33 e15 ε11 ε33

P-7 13.0 11.9 2.5 8.3 8.3 −10.3 14.7 13.5 171 186
C-91 12.0 7.7 7.7 11.4 2.4 −17.3 21.2 20.2 226 235

Table 2 Material
properties of matrix

Young’s modulus E Poisson’s ratio ν
(×1010 N/m2)

Epoxy 0.300 0.35
Epoxy+30.5% glass beads 0.440 0.36
Aluminum 7.0 0.33
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Fig. 2 Stress-intensity factor versus radius ratio
c/a for a/b = 0.9

Fig. 3 Stress-intensity factor versus a/b for c/a = 0.5

factors πkδ1/2σ0a1/2(δ = i, o) as a function of a/b for some P-7 fiber composites with c/a = 0.5 under
e1E∞/σ0 = 0 in Fig. 3. The stress-intensity factors ki

1 and ko
1 are seen to increase with increasing a/b ratios

for c1 < 1 and to decrease with increasing values of a/b when c1 > 1. In the limiting case of b → ∞, the
problem becomes one of an infinite piezoelectric medium with a flat annular crack. Thus, the solution can
be easily evaluated numerically. From the first of Eq. 23 and Eqs. 58, 59, it is clear that the electric field E∞
has an effect on the stress intensity factors ki

1 and ko
1 (not shown).

Figure 4 shows the dependence of the energy-release rate Go/Go
0 at the outer tip of the crack on

e1E∞/σ0 for some piezoelectric composites with a/b = 0.9 and c/a = 0.5 under uniform strain, where the
results have been normalized by the values of the infinite PZTs without electric field, respectively. Also
shown is the energy-density factor So/So

0. Comparing the results of Go/Go
0 and So/So

0, we do not observe a
difference. Application of a positive electric field to the piezoelectric fiber reduces the energy-release rate
and energy-density factor, while a negative electric field causes them to increase. The matrix properties
have a definite effect on the energy-release rate and energy-density factor. The energy-release rate and
energy-density factor under uniform stress are independent of the electric field (no figure shown). Figure
5 shows similar results for the energy-release rate Gi/Gi

0 and energy-density factor Si/Si
0 at the inner tip

of the crack.

5 Conclusions

The mode I fracture-mechanics parameters, such as stress intensity factor, energy-release rate and energy
density factor are presented for a flat annular permeable crack in piezoelectric fiber composites.

Based on the results of this study, the following conclusions may be drawn:

– The fracture-mechanics parameters of piezoelectric fiber composites increase or decrease with increas-
ing the inner-crack radius to outer-crack radius ratio, depending on the matrix-material properties.

– Since the surrounding matrix restricts the deformation of the piezoelectric fibers, the fracture-mechanics
parameters of the piezoelectric fiber composites are smaller than those for piezoelectric fibers.
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Fig. 4 Energy-release rate at outer tip of crack
versus electric field (a/b = 0.9, c/a = 0.5)

Fig. 5 Energy-release rate at inner tip of crack versus
electric field (a/b = 0.9, c/a = 0.5)

– The fracture mechanics parameters of the inner tip of the flat annular crack are always larger than those
of the outer crack tip.

– A positive electric field decreases the fracture-mechanics parameters under an applied uniform strain,
while a negative one has the opposite effect.

The results of this work provide a basis for assessing the operating life of piezoelectric fiber composites
resulting from a pre-existing three-dimensional crack. Although this piezoelectric crack problem has a sim-
ple geometry, the current analysis can be easily extended to investigate the fracture-mechanics parameters
in other types of composite materials (e.g. cracked piezoelectric composites with fiber coating, composites
with a completely broken piezoelectric fiber, etc.). Work in this area is currently being pursued.
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Japan under the Grant-in-Aid for Young Scientists (B).

Appendix 1

To solve the differential equations (8) and (9), we use integral transforms. Applying the Hankel transform
with respect to r to (8) and (9), we find
⎡
⎢⎢⎢⎢⎢⎢⎣

c11α
2 − c44

d2

dz2 (c13 + c44)α
d
dz

(e31 + e15)α
d

dz

(c13 + c44)α
d
dz

c33
d2

dz2 − c44α
2 −e15α

2 + e33
d2

dz2

(e31 + e15)α
d

dz
−e15α

2 + e33
d2

dz2 ε11α
2 − ε33

d2

dz2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎝ ūr

ūz

φ̄

⎞
⎠ = 0, (67)
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where

ūr(α, z) =
∫ ∞

0
rur(r, z)J1(αr)dr,

ūz(α, z) =
∫ ∞

0
ruz(r, z)J0(αr)dr,

φ̄(α, z) =
∫ ∞

0
rφ(r, z)J0(αr)dr.

(68)

There are three ordinary equations with three unknowns: hence, from standard methodology, a general
exponential form, exp(−γαz), of the solution for the transformed principal variables results. The parameter
γ must satisfy the following characteristic equations:

a0γ
6 + b0γ

4 + c0γ
2 + d0 = 0, (69)

where

a0 = c44(c33ε33 + e2
33),

b0 = −2c44e15e33 − c11e2
33 − c33(c44ε11 + c11ε33)+ ε33(c13 + c44)

2

+2e33(c13 + c44)(e31 + e15)− c2
44ε33 − c33(e31 + e15)

2,
c0 = 2c11e15e33 + c44e2

15 + c11(c33ε11 + c44ε33)− ε11(c13 + c44)
2

−2e15(c13 + c44)(e31 + e15)+ c2
44ε11 + c44(e31 + e15)

2,
d0 = −c11(c44ε11 + e2

15).

(70)

The solutions of (67) may then be expressed as

ūr = 2
πα

3∑
j=1

ajAj(α) exp(−γjαz),

ūz = 2
πα

3∑
j=1

1
γj

Aj(α) exp(−γjαz),

φ̄ = − 2
πα

3∑
j=1

bj

γj
Aj(α) exp(−γjαz),

(71)

where γ 2
j (j = 1, 2, 3) are the roots of (69), and aj, bj (j = 1, 2, 3) stand for the following abbreviations:

aj = (e31 + e15)(c33γ
2
j − c44)− (c13 + c44)(e33γ

2
j − e15)

(c44γ
2
j − c11)(e33γ

2
j − e15)+ (c13 + c44)(e31 + e15)γ

2
j

, (72)

bj = (c44γ
2
j − c11)aj + (c13 + c44)

e31 + e15
. (73)

Similarly, one can take the Fourier transforms of (8) and (9) relative to z. The results are

⎡
⎣ r11 r21 r13

r21 r22 r23
r31 r32 r33

⎤
⎦

⎛
⎝ ūr

ūz,r
φ̄,r

⎞
⎠ = 0, (74)
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where

r11 = c11

(
d2

dr2 + 1
r

d
dr

− 1
r2

)
− c44α

2,

r12 = − i(c13 + c44)α,

r13 = − i(e31 + e15)α,

r21 = − i(c13 + c44)α

(
d2

dr2 + 1
r

d
dr

− 1
r2

)
,

r22 = −c33α
2 + c44

(
d2

dr2 + 1
r

d
dr

− 1
r2

)
,

r23 = e15

(
d2

dr2 + 1
r

d
dr

− 1
r2

)
− e33α

2,

r31 = −i(e31 + e15)α

(
d2

dr2 + 1
r

d
dr

− 1
r2

)
,

r32 = e15

(
d2

dr2 + 1
r

d
dr

− 1
r2

)
− e33α

2,

r33 = −ε11

(
d2

dr2 + 1
r

d
dr

− 1
r2

)
+ ε33α

2,

(75)

and

ūr(α, r) =
∫ ∞

−∞
ur(r, z) exp(iαz)dz,

ūz(α, r) =
∫ ∞

−∞
uz(r, z) exp(iαz)dz,

φ̄(α, r) =
∫ ∞

−∞
φ(r, z) exp(iαz)dz.

(76)

The solutions are

ūr = 2
α

3∑
j=1

a′
jBj(α)I1(γ

′
j αr),

ūz = 2
α

3∑
j=1

1
γ ′

j
Bj(α)I0(γ

′
j αr),

φ̄ = − 2
α

3∑
j=1

b′
j

γ ′
j

Bj(α)I0(γ
′
j αr),

(77)

where

γ
′2
j = 1

γ 2
j

, (78)

a′
j = −ajγ

2
j , (79)

b′
j = −bj. (80)

After considering the symmetry and far-field conditions, superposition of the solutions [(71) and (77)]
yields (26) and (27). A similar procedure may be employed to derive the displacements for the outside
elastic material and hence Eq. 28 can be obtained.
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Appendix 2

Pi(α, t) (i = 1, . . . , 5) and C(α) in Eq. 40 are given by

P1(α, t) =
3∑

j=1

ajdjγ
′
j I1(γ

′
j αt)K1(γ

′
j αb),

P2(α, t) =
3∑

j=1

djγ
′2
j I1(γ

′
j αt)K0(γ

′
j αb),

P3(α, t) =
3∑

j=1

djI1(γ
′
j αt)

{
mjγ

′2
j K0(γ

′
j αb)− 1

αb
(c12 − c11)ajγ

′
j K1(γ

′
j αb)

}
,

P4(α, t) = −
3∑

j=1

djfjγ
′3
j I1(γ

′
j αt)K1(γ

′
j αb),

P5(α, t) = −
3∑

j=1

djnjγ
′3
j I1(γ

′
j αt)K1(γ

′
j αb),

(81)

and

C(α) =

⎡
⎢⎢⎢⎢⎣

c1,1(α) c1,2(α) c1,3(α) c1,4(α) c1,5(α)

c2,1(α) c2,2(α) c2,3(α) c2,4(α) c2,5(α)

c3,1(α) c3,2(α) c3,3(α) c3,4(α) c3,5(α)

c4,1(α) c4,2(α) c4,3(α) c4,4(α) c4,5(α)

c5,1(α) c5,2(α) c5,3(α) c5,4(α) c5,5(α)

⎤
⎥⎥⎥⎥⎦ . (82)

In (82), the elements ci,j(α) are

c1,j(α) = a
′
jI1(γ

′
j αb),

c2,j(α) = γjI0(γ
′
j αb),

c3,j(α) = mjγjI0(γ
′
j αb)− 1

αb
(c12 − c11)a

′
jI1(γ

′
j αb),

c4,j(α) = fjI1(γ
′
j αb),

c5,j(α) = njI1(γ
′
j αb),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(j = 1, 2, 3), (83)

c1,4(α) = K1(αb),
c2,4(α) = K0(αb),

c3,4(α) = 2µ
αb

[αbK0(αb)+ K1(αb)],
c4,4(α) = −2µK1(αb),
c5,4(α) = 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(84)

c1,5(α) = −4(1 − ν)K1(αb)− αbK0(αb),
c2,5(α) = −αbK1(αb),

c3,5(α) = −2µ
αb

[
(4 − 4ν + α2b2)K1(αb)+ (3 − 2ν)αbK0(αb)

]
,

c4,5(α) = 2µ[(2 − 2ν)K1(αb)+ αbK0(αb)],
c5,5(α) = 0,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(85)

where
mj = c11aj − c13 + e31bj (j = 1, 2, 3), (86)

nj = e15(ajγ
2
j + 1)− ε11bj (j = 1, 2, 3). (87)

In (40) |C(α)| is the determinant of the square matrix C(α) and Qi,j(α) are the cofactors of the elements
ci,j(α).
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